Assertion : The total charge stored in a capacitor is zero.

Reason : The field just outside the capacitor is $\frac{\sigma }{{{\varepsilon _0}}}$. ( $\sigma $ is the charge density).

  • [AIIMS 2009]
  • A

    If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.

  • B

    If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.

  • C

    If Assertion is correct but Reason is incorrect.

  • D

    If both the Assertion and Reason are incorrect.

Similar Questions

A capacitor is made of two square plates each of side $a$ making a very small angle $\alpha$ between them, as shown in figure. The capacitance will be close to

  • [JEE MAIN 2020]

The capacity of the conductor does not depend upon

Answer the following:

$(a)$ The top of the atmosphere is at about $400\; kV$ with respect to the surface of the earth, corresponding to an electric field that decreases with altitude. Near the surface of the earth, the field is about $100\; Vm ^{-1} .$ Why then do we not get an electric shock as we step out of our house into the open? (Assume the house to be a steel cage so there is no field inside!)

$(b)$ A man fixes outside his house one evening a two metre high insulating slab carrying on its top a large aluminium sheet of area $1\; m ^{2} .$ Will he get an electric shock if he touches the metal sheet next morning?

$(c)$ The discharging current in the atmosphere due to the small conductivity of air is known to be $1800 \;A$ on an average over the globe. Why then does the atmosphere not discharge itself completely in due course and become electrically neutral? In other words, what keeps the atmosphere charged?

$(d)$ What are the forms of energy into which the electrical energy of the atmosphere is dissipated during a lightning? (The earth has an electric field of about $100\; Vm ^{-1}$ at its surface in the downward direction, corresponding to a surface charge density $=-10^{-9} \;C \,m ^{-2} .$ Due to the slight conductivity of the atmosphere up to about $50\; km$ (beyond which it is good conductor), about $+1800 \;C$ is pumped every second into the earth as a whole. The earth, however, does not get discharged since thunderstorms and lightning occurring continually all over the globe pump an equal amount of negative charge on the earth.)

A $500\,\mu F$ capacitor is charged at a steady rate of $100\,\mu C/sec$ . The potential difference across the capacitor will be $10\,V$ after an interval of......$sec$

The magnitude of electric field $E$ in the annular region of a charged cylindrical capacitor

  • [IIT 1996]